
Waterloo, 2019-10-05

Formal Design,

Implementation and Verification

of Blockchain Languages

Grigore Rosu

University of Illinois at Urbana-Champaign

President & CEO, Runtime Verification Inc.

Ideal Language Framework Vision

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

2

…

Current State-of-the-Art
- Sharp Contrast to Ideal Vision -

3

C

Java

JavaScript

Solidity

Ethereum VM

…

Interpreter

Symbolic Execution

Compiler

Model Checker

Deductive Verifier

…

Separate tools, by
separate teams, little

to no code shared

Current State-of-the-Art
- Sharp Contrast to Ideal Vision -

4

C

Java

JavaScript

Solidity

Ethereum VM

…

Interpreter

Symbolic Execution

Compiler

Model Checker

Deductive Verifier

…

The story of the
PL/FM community.
Maintenance hell

(L * T systems).
Uneconomical.
Wasted talent!

L T

How It Should Be

5

C

Java

JavaScript

Solidity

Ethereum VM

…

Interpreter

Symbolic Execution

Compiler

Model Checker

Deductive Verifier

…

Ideal Language Framework

Our Attempt: the K Framework
http://kframework.org

• We tried various semantic styles, for >15y and
>100 top-tier conference and journal papers:
– Small-/big-step SOS; Evaluation contexts; Abstract

machines (CC, CK, CEK, SECD, …); Chemical abstract
machine; Axiomatic; Continuations; Denotational;…

• But each of the above had limitations
– Especially related to modularity, notation, verification

• K framework initially engineered: keep advantages
and avoid limitations of various semantic styles
– Then theory came

6

http://kframework.org/

Complete K Definition of KernelC

7

Complete K Definition of KernelC

Syntax declared using annotated BNF

…

8

Complete K Definition of KernelC

Configuration given as a nested cell structure.
Leaves can be sets, multisets, lists, maps, or syntax

9

Complete K Definition of KernelC

Semantic rules given contextually

rule

k: X = V => V …

env: … X |-> (_ => V) …

10

K Scales

Several large languages were recently defined in K:

• JavaScript ES5: by Park etal [PLDI’15]
– Passes existing conformance test suite (2872 programs)

– Found (confirmed) bugs in Chrome, IE, Firefox, Safari

• Java 1.4: by Bogdanas etal [POPL’15]

• x86: by Dasgupta etal [PLDI’19]

• C11: Ellison etal [POPL’12, PLDI’15]
– 192 different types of undefined behavior

– 10,000+ program tests (gcc torture tests, obfuscated C, …)

– Commercialized by startup (Runtime Verification, Inc.)

+ EVM [CSF’18], Solidity, IELE [FM’19], Plutus, Vyper, …
11

Ideal Language Framework Vision [K]

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

12

…
K -> LLVM -> x86

State-of-the-Art

• Redefine the language using a different semantic
approach (Hoare/separation/dynamic logic)

• Language specific, non-executable, error-prone

13

Ideal Scenario

• Use directly the trusted

language model/semantics!

• Language-independent proof system

– Takes operational semantics as axioms

– Derives reachability properties

– Sound and relatively complete for all languages!

Formal Language Definition
(Syntax and Semantics)

Deductive
program
verifier

Symbolic
execution

14

[…, LICS’13, RTA’15, OOPSLA’16, FSCD’16, LMCS’17, LICS’19]

Matching -Logic

16 proof rules only!
Simple proof checker

(200 LOC, vs Coq’s 8000)!

Expressiveness of Matching -Logic

Reachability Logic (Semantics of K)
[LICS’13, RTA’14, RTA’15,OOPLSA’16]

• “Rewrite” rules over matching logic patterns:

• Patterns generalize terms, so reachability rules
capture rewriting, that is, operational semantics

• Reachability rules capture Hoare triples

• Sound & relative complete proof system
– Now proved as matching -logic theorems

17

Can be expressed in matching logic:
→ (’)  is “weak eventually”



[FM’12]

K Deductive Program Verifier =
= (Best Effort) Automation of ML

18

EVM
IELE
Plutus
Solidity
…

• Evaluated it with the existing
semantics of C, Java, JavaScript,
EVM, and several tricky programs

• Morale:
– Performance is comparable with

language-specific provers!

Sum 1+2+…+n in IMP: Main

19

Sum 1+2+…+n in IMP: Invariant

20

OK Performance

• Properties very challenging to verify automatically. We only found
one such prover for C, based on a separation logic extension of VCC
– Which takes 260 sec to verify AVL insert (ours takes 280 sec; see above)

21

Time (seconds) spent on
applying semantic steps

(symbolic execution)

Time (seconds) spent on
domain reasoning (matching

logic + querying Z3)[OOPLSA’16]

K for the Blockchain

22

K Framework Vision

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

23

…

KEVM: Semantics of the Ethereum
Virtual Machine (EVM) in K

Complete semantics of EVM in K
– https://github.com/kframework/evm-semantics
– Passes 60,000+ tests of C++ reference implementation
– 25% faster than ethereumjs, used by Truffle
– 5x (only!) slower than ethereum-cpp
– Used as canonical EVM spec (replacing Yellow Paper)

24

[CSL’18]

https://github.com/kframework/evm-semantics

1) Formal documentation: http://jellopaper.org

25

What Can We Do with KEVM?

http://jellopaper.org/

What Can We Do with KEVM?

2) Generate and deploy correct-by-construction EVM
client/simulator/emulator

Firefly tool: KEVM to run, analyze and monitor tests

Cardano testnet: mantis executing KEVM

26

What Can We Do with KEVM?
3) Formally verify Ethereum smart contracts
RV does that commercially. Won first Ethereum Security
grant to verify Casper, then hired to formalize Beacon
Chain (Serenity) and verify ETH1 -> ETH2 deposit contract

27

[FSE’18]

Formalizing ERC20, ERC777, … in K

• K is very expressive for modeling: languages, but
also token specifications and protocols; executable

• To formally verify smart contracts, we also
formalized token specifications, multisigs, etc.:
– ERC20, ERC777, many others

• All our specs are language-independent!
– i.e., not specific to Solidity, not even to EVM

• We had the first verified ERC20 contracts!
– Written both in Solidity and in Vyper, verified as EVM

• Others use or integrate our framework and specs:
– DappHub (KLab), ETHWorks (Waffle), Consensys, Gnosis

28

https://runtimeverification.com/blog/erc20-k-formal-executable-specification-of-erc20/
https://runtimeverification.com/blog/erc777-k-formal-executable-specification-of-erc777/
https://github.com/runtimeverification/verified-smart-contracts
https://github.com/dapphub/klab
https://github.com/EthWorks/Waffle/releases/tag/2.0.10

Smart Contract Verification Workflow

ERC20 Informal

Business Logic
1

rule

transfer(T, V) => true

caller: F

account:

id: F

balance: BF => BF - V

account:

id: T

balance: BT => BT + V

log: . => Transfer(F,T,V)

requires

0 <= V /\

V <= BF /\

BT + V <= MAXVALUE

ERC20-K

formal

executable
high-level spec

2

[transfer]

callData: #abiCallData("transfer", #address(TO_ID),

#uint256(VALUE))

gas: {GASCAP} => _

refund: _ => _

requires:

andBool 0 <=Int TO_ID andBool TO_ID <Int
(2 ^Int 160)

andBool 0 <=Int VALUE andBool VALUE
<Int (2 ^Int 256)

andBool 0 <=Int BAL_FROM andBool

BAL_FROM <Int (2 ^Int 256)

andBool 0 <=Int BAL_TO andBool BAL_TO

<Int (2 ^Int 256)

[transfer-success]

k: #execute => (RETURN RET_ADDR:Int 32 ~> _)

localMem: .Map => (.Map[RET_ADDR :=

#asByteStackInWidth(1, 32)] _:Map)

log: _:List (.List =>

ListItem(#abiEventLog(ACCT_ID, "Transfer",
#indexed(#address(CALLER_ID

……….

………

…….

ERC20-EVM

formal executable

low-level spec

that contains all

EVM details

3

Notable Contracts
We’ve Verified

• ETH2.0 Deposit

• GnosisSafe

• Ethereum Casper FFG

• Uniswap

• DappSys DSToken ERC20

• Bihu KEY token

30

Designing New (and Better)
Blockchain Languages Using K

31

EVM Not Human Readable
(among other nuisences)

32

define public @sum(%n) {
%result = 0

condition:
%cond = cmp le %n, 0
br %cond, after_loop
%result = add %result, %n
%n = sub %n, 1
br condition

after_loop:
ret %result

}

If it must be
low-level, then
I prefer this:

• Incorporates learnings from defining KEVM and
from using it to verify smart contracts

• Register-based machine, like LLVM; unbounded*

• IELE was designed and implemented using formal
methods and semantics from scratch!

• Until IELE, only existing or toy languages have
been given formal semantics in K
– Not as exciting as designing new languages

– We should use semantics as an intrinsic, active
language design principle, not post-mortem

33

A New Virtual Machine (and
Language) for the Blockchain

[FM’19]

Thanks to IOHK (iohk.io) for funding this project

K Semantics of Other
Blockchain Languages

• WASM (web assembly) – in progress, in collaboration
with the Ethereum Foundation

• Solidity – in progress, collaboration between RV and
Sun Jun’s group in Singapore

• Vyper – in progress, collaboration with the Ethereum
Foundation

• Plutus (functional) – collaboration with IOHK

• Flow (linear types, resources) – in progress,
collaboration with DapperLabs (creators of
CryptoKitties); plan is have only a K “implementation”

…
34

Modelling and Verification of
Blockchain Protocols

• Matching logic, rewriting and K can also be
used to formally specify and verify consensus
protocols, random number generators, etc.

• Done or ongoing:
– Casper FFG (Ethereum Foundation)

– RANDAO (Ethereum Foundation)

– Algorand (Algorand)

– Casper CBC (Coordination Technology)

– Serenity / ETH 2.0 (Ethereum Foundation)

• Several others planned or in discussions
35

K Blockchain Products and Tools
in the Making. To be SaaS delivered

• Firefly – automated smart contract analysis

• KaaS – K formal verification as a service

• Proof objects – ultimate correctness certificates

36

Taking K to the Next Level

• Many people use K (40+ repositories and 50,000+ commits)
+ Open source, used also for teaching PL at several universities
+ Most comprehensive and rich in features language framework
– Hard to use and debug, poor error messages
– Slow (may take hours to formally verify non-trivial programs)

• Two major underlying engines under development
1. Concrete execution engine

(LLVM backend)
• Many parallel calls in tools like test coverage

2. Symbolic execution engine
(Haskell backend)
• Symbolic paths can be explored in parallel

• Efficient implementations of these two engines will be offered as
Software as a Service (SaaS) in the cloud
+ Wait seconds, not minutes or hours!
+ Good error messages, good debugger, good UX
+ Proof objects, too (discussed shortly) 37

test runner

test case
coverage

test case
generation

property checker

• Automated
• Lightweight
• Powered by

symbolic state
explorer / debuggerequivalence

checker

Firefly = +

39

=

K [EVM] Automation

KaaS

formal verification
as a service

40

aaS

41

K Tool

(say the
program
verifier)

Programming
Language

(EVM, WASM,
Solidity, Vyper, …)

Properties to verify

Hints

Code to verify
(EVM, WASM,

Solidity, Vyper, …)

False

True

To be invoked
100’s or 1000’s of
times during a
verification effort.

Best Approach Ever! ☺
But still a lot to trust 

42

K Tool

(say the
program
verifier)

Programming
Language

(EVM, WASM,
Solidity, Vyper, …)

Properties to verify

Hints

Code to verify
(EVM, WASM,

Solidity, Vyper, …)

False

True

Trusted

Trusted

Trusted

100,000+ LOC,
several languages.
Too much to trust!

Proof Object Generation

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

43

…

Proof Object Generation

• Each of the K tools is a best-effort implementation of
proof search in Matching µ-Logic:

• New Haskell backend of K will explicitly generate proof
objects for verification tasks

44

16 proof rules only!
Simple proof checker (<200 LOC)!

In contrast, Coq has about 45
proof rules, and its proof checker

has 8000+ lines of OCAML

aaS – Proof Objects

45

K Tool

(say the
program
verifier)

Properties to verify

Hints

True

Trusted

Trusted

Proof
Object
(large!)

Proof
Checker

(3rd party)
(<200 LOC)

Programming
Language

(EVM, WASM,
Solidity, Vyper, …)

Trusted Properties to verify

Trusted

Trusted

False

Assured Trust. Like Never Before!

46

program

True

Proof
Object
(huge!)

Proof
Checker

(3rd party)
(<200 LOC)

Programming
Language

(EVM, WASM,
Solidity, Vyper, …)

Trusted Properties to verify
Trusted

Trusted

Trust in language and
properties unavoidable!
Proof checker easy to
trust: small, public,
standardized.Profitable, too.

Proof objects as
SaaS. Digital asset
rating companies
will require them!

- Powered

47

Blockchain

K as a Universal Blockchain Language

• We want to be able to write (provably correct)
smart contracts in any programming language.

• All you need is a K-powered blockchain!

48

K language semantics will be stored on
blockchain. Fast LLVM backend of K

can be used as execution engine / VM.

K as a Smart Contract Language

• Smart contracts implement transactions
– Often using poorly designed and thus insecure

languages, compilers and interpreters / VMs

K also implements transactions, directly!
– Indeed, each K rule instance is a transaction

• Each smart contract (Solidity, EVM, …) requires
a formal specification in order to be verified

K formal specifications are already executable!
– And indeed, they are validated by heavy testing

49

Hm, then why not write my smart contracts
directly and only as K executable specifications?

Example: ERC20 Token in Solidity
- Snippet -

50

Bytecode:

51

Opcodes:

• Unreadable
• Slow: ~25ms to execute (ganache)
• Untrusted compiler, so it needs to

be formally verified to be trusted
• We formally verify it using KEVM

against the following K specification:

Example: ERC20 Compiled to EVM
- Snippet -

K Specification of ERC20
- Snippet, Sugared -

52

rule transfer(To, V) => true

caller: From

account: id: From balance: BalanceFrom => BalanceFrom - V

account: id: To balance: BalanceTo => BalanceTo + V

log: . => Transfer(From, To, V)

requires 0 <= V <= BalanceFrom /\ BalanceTo + V <= MAXVALUE

• Formal, yet understandable by non-experts
• Executable, thus testable (for increased confidence)
• Fast: ~2ms to execute with LLVM backend of K
• No compiler required, correct-by-construction
• Use K as programming language for smart contracts!
(needed: gas model for K)

Conclusion: It Can Be Done!

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

53

…

Extra Slides

54

Semantics-Based Compilation

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

55

…

Semantics-Based Compilation (SBC)

Goals
– Execution of P in L equivalent to executing LP in a start configuration
– LP should be “as simple as possible”, only capturing exactly the

dynamics of L necessary to execute program P

Program P in
Language L

Semantics-Based
Compilation

𝕂 Semantics of
Language L

𝕂 Semantics of
Language LP

¬ b ≤ 27

n := n / 2

2 ≤ n ∧ n is even2 ≤ n ∧ ¬ n is even

¬ 2 ≤ n

n := 3n + 1

b ≤ 27

n := b

b := b + 1

b := 1

n := 1

x := 0

start

outer

inner

end

// start

int b , n , x ;

b = 1 ; n = 1 ; x = 0 ;

// outer

while (b <= 27) {

n = b ;

// inner

while (2 <= n) {

if (n <= ((n / 2) * 2))

{

n = n / 2 ;

} else {

n = (3 * n) + 1 ;

}

x = x + 1 ;

}

b = b + 1 ;

}

// end

compiles to

Semantics-Based Compilation (SBC)
Experiments with Early Prototype

Program Original (s) Compiled (s) Speedup

sum.imp 70.6 7.3 9.7

collatz.imp 34.5 2.7 12.8

collatz-all.imp 77.4 5.7 13.6

krazy-loop.imp 67.6 3.3 20.5

K – A Universal Blockchain Language

• K-powered blockchain enables (provably correct)
smart contracts in any programming language!

58

1. Write contract P in any language, say L (unique address)
2. SBC[L] your P into LP ; verify P (or LP) with K prover

