Detecting Standard Violation
Errors In Smart Contracts

Fan Long

University of Toronto & Conflux Foundation

Joint work with Ao Li*

Smart Contracts

e Usages of Smart contracts
e Tokens
e Authorization
e Poll
* Lease agreement

Ethereum and Smart Contracts

A

Smart Contracts Standards

* Smart contracts * Standards
: ;czjlfcir;srization — : EEE:;(Z);ERCJH
* Poll * ERC-1417, ERC-1202
® ... ‘_7’

e Maker Token
 \VVeChain Token
e BECToken

e USD Coin

Standard Implementation

Maker Token
VeChain Token
BECToken

USD Coin

Dai: The cryptocurrency with price stability that is the asset of exchange in the Dai Stablecoin

System. It is a standard Ethereum token adhering to the ERC20 standard.
-

Beauty Ecosystem Coin

What can | do with UET?

UET is a standard ERC20 token, so you can
hold it and transfer it.

Standard Implementation

 Maker Token
e VeChain Token
 BECToken

* USD Coin

Your Tokens Are Mine: A Suspicious

OKEx exchange suspended BEC
withdrawal and trading because of

batchOverflow attack
Multiple ERC20 Smart Contr
(CVE-2018-11397, CVE-208-11398)

What is BECToken?

* Adigital token claims that it satisfies ERC-20

e BECToken standard.
e Tokens can be transferred between addresses.
 BECToken was attacked in April 2018. The market

cap of BECToken evaporated in days.

ERC-20 Fungible Token
contract ERC20Interface {

function totalSupply() public returns (uint);

function balanceOf(address tokenOwner) public returns (uint);

* totalSupply(): the total supply of the token.
* balanceOf(): returns the balance of given account.

ERC-20 Fungible Token

contract ERC20Interface {

function transfer(address to, uint tokens) public returns (bool);

 transfer(): transfer the transaction sender’s token to
the receiver.

ERC-20 Fungible Token
contract ERC20Interface {
function totalSupply() public returns (uint);

function balanceOf(address tokenOwner) public returns (uint);

function transfer(address to, uint tokens) public returns (bool);

ZaEAddress(balanCQOf(a)) = totalSupply()

What happened to their Implementation?

e BECToken

mapping (address => uint256) balances;

function batchTransfer(address|] receivers, uint256 v) public {
uint cnt = receivers.length;
uint256 amount = uint256(cnt) * v;
require(_value > 0 && balances|msg.sender] >= amount);
balances|msg.sender]| = balances|msg.sender|.sub(amount);
for (uinti=0;i<cnt;i++) {

balances[receivers|i]] = balances[receivers|i]].add(v);

Transfer(msg.sender, _receivers|i], v);

J
}

What happened to their Implementation?

mapping (address => uint256) balances;

balances is a
bookkeeping
variable that tracks
balances for each
addresses.

What happened to their Implementation?

mapping (address => uint256) balances;

‘ function batchTransfer(address|] receivers, uint256 v) public {
msg.sender
+V TV msg.sender
‘ v ‘ msg.sender msg.sender

receivers[0]

s @b
‘ receivers[n]

receivers[1]

msg.sender

What happened to their Implementation?

mapping (address => uint256) balances;

function batchTransfer(address|] receivers, uint256 v) public {
uint cnt = receivers.length;

o uint256 amount = uint256(cnt) * v;
The function first

computes the total require(_value > 0 && balances|msg.sender] >= amount);
amount of token to

msg.sender msg.sender
be transferred.

msg.sender

What happened to their Implementation?

mapping (address => uint256) balances;
function batchTransfer(address|] receivers, uint256 v) public {
uint cnt = receivers.length;

, uint256 amount = uint256(cnt) * v;
The function then

updates the require(_value > 0 && balances|msg.sender] >= amount);
message senders balances/msg.sender| = balances|msg.sender].sub(amount);
balance.

msg.sender

What happened to their Implementation?

mapping (address => uint256) balances;
function batchTransfer(address|] receivers, uint256 v) public {
uint cnt = receivers.length;

uint256 amount = uint256(cnt) * v;

At last, the
function update require(_value > 0 && balances|msg.sender] >= amount);
receivers’ balances. balances/msg.sender| = balances|msg.sender].sub(amount);

for (uinti=0;i<cnt;i++) {
balances[receivers|i]] = balances[receivers|i]].add(v);

Transfer(msg.sender, _receivers|i], v);

}

What happened to their Implementation?

mapping (address => uint256) balances;
function batchTransfer(address|] receivers, uint256 v) public {

uint cnt = receivers.length;

_9255 . . —
V=2 uint256 amount = uint256(cnt) * v; n
receivers.length=2 , | bal d _ :
Amount = 0 require(_value > 0 && balances[msg.sender]| >= amount);

balances|msg.sender| = balances|msg.sender].sub(amount);
for (uinti=0;i<cnt;i++) {
balances[receivers|i]] = balances[receivers|i]].add(v);

Transfer(msg.sender, _receivers|i], v);

J
}

What happened to their Implementation?

mapping (address => uint256) balances;

function batchTransfer(address|] receivers, uint256 v) public {
uint cnt = receivers.length;
uint256 amount = uint256(cnt) * v;

require(_value > 0 && balances[msg.sender] >= amount)g®
JH’J,

V=2255
receivers.length=2

amount =0
balances|msg.sender]| = balances|[msg.sender]|.sub(amo

for (uinti=0;i<cnt;i++) {
balances[receivers|i]] = balances[receivers|i]].add(v);

Transfer(msg.sender, _receivers|i], v);

}
}

What happened to their Implementation?

mapping (address => uint256) balances;
function batchTransfer(address|] receivers, uint256 v) public {

uint cnt = receivers.length;

_ 9255 . .

v=2 uint256 amount = uint256(cnt) * v;

receivers.length=2 , | bal g _ ,
Amount = 0 require(_value > 0 && balances[msg.sender] >= amount);

balances|msg.sender| = balances[msg.sender].sub(amount);
for (uinti=0;i<cnt;i++) {
A
balances[receivers]i]] = balances[receivers[i]].add(v);“

Transfer(msg.sender, _receivers|i], v);

}
}

What happened to their Implementation?

 BECToken
uint256 amount = uint256(cnt) * v;

require(_value > 0 && balances|msg.sender] >= amount);

The attacker could send a large amount of
tokens that he or she does not own, effectively
generating BECTokens from the air!

What happened to their Implementation?

 BECToken
uint256 amount = uint256(cnt) * v;

require(_value > 0 && balances|msg.sender] >= amount);

The sum of account balances equals to total supiiy!‘

Solar

EVM Bytecode Standards

Total Supply Invariant

ZaEAddress(balanceOf(a)) — tOtCllSUPPIYO

A

Standard Specification

* Solar allows user to specify
sum =0 constraints using a Python-like
for address in ADDRS: language.

bal = C.balanceOf(address)
check(sum + bal >= sum)
sum += bal ZaEAddress(balanCQOf(a)) = totalSupply()

check(sum == C.totalSupply())

A

Standard Specification

* The function first computes the
sum =0 sum of account balances.

for address in ADDRS:
bal = C.balanceOf(address)

check(sum + bal >= sum)
sum += bal ZaEAddress(balanCQOf(a))

A

Standard Specification

* Helper variable ADDR
sum =0 represents the set of all

for address if ADDRS: possible addresses.

bal = C.balanceOf(address)

check(sum + bal >= sum)

sum += bal ZabalanceOf(a))

A

Standard Specification

 The function calls balancesOf()
sum =10 to retrieve the balance of each

for address in ADDRS: address.

bal @e@f(@

check(sum + bal >= sum)

sum += bal ZaEAddress balanceOf(a ’

A

Standard Specification

* |t then checks whether the sum
of balances equals to the result
returned by totalSupply().

ZaEAddress(balanCQOf(a)) — totalSupply()
check(sum == C.totalSupply())

Transfer Constraint

acc = [SymAddr(), SymAddr()]
assume(acc[0] = acc[1])
value = Symint()
pre_bal = [c.balanceOf(account) for account in acc]
assume(pre_bal[0] + pre_bal[1] >= pre_bal[0])
result = c.transfer(acc[1], value, sender=acc|0])
post_bal = [c.balanceOf(account) for account in acc]
check(result == 0 and
pre_bal[0] == post_bal[0] and
pre_bal[1l] == post_bal[1] or
result '= 0 and
pre_bal[0] - value == post_bal[0] and
pre_bal[1l] + value == post_bal[1] and
post_bal[0] >= pre_bal[0] and
pre_bal[1] >= post_bal[1])

 Transaction initiator has
enough token.

* The balances of both sender

and receiver are updated
accordingly.

ERC-20 Fungible Token

contract ERC20Interface {

e Approve and transferFrom are two functions that
allows the token owners to authorize a third party
to spend their tokens.

function allowance(address tokenOwner, address spender) public returns
(uint);
function approve(address spender, uint tokens) public returns (bool success);

function transferFrom(address from, address to, uint tokens) public returns
(bool);

}

Standard Specification

* Transaction initiator has
enough allowance.

* Token owner has enough
balance.

* The balances of both sender
and receiver are updated
accordingly.

A

acc = [SymAddr(), SymAddr(), SymAddr()]
values = [SymInt(), Symint()]
assume(acc[0] != acc[1] and acc[1] != acc[2])
pre_bal = [c.balanceOf(account) for account in acc[:2]]
assume(pre_bal[0] + pre_bal[1] >= pre_bal[0]) r1 =
c.approve(acc[2], values[0], sender=acc[0])
assume(rl !=0)
r2 = c.transferFrom(acc[0], acc[1], values[1], sender=acc[2])
r3 = c.allowance(acc|0], acc[2])
post_bal = [c.balanceOf(account) for account in acc[:2]]
check(r2 != 0 and
pre_bal[0] - values[1] == post_bal[0] and
pre_bal[1] + values[1] == post_bal[1] and
r3 + values[1] == values[0] and
post_bal[0] <= pre_bal[0] and
post_bal[1l] >= pre_bal[1] and
values[0] >= values[1] and
values[0] <=r3 orr2 ==0and
pre_bal[0] == post_bal[0] and
pre_bal[1l] == post_bal[1] and
r3 == values|0])

A

Standard Specification

acc = [SymAddr(), SymAddr()]
tid = Symint()
assume(acc[0] = acc[1])

e Transaction initiator has the | owner = cownerof(tid)

assume(owner !=acc[1])

allowance from the token app = c.getApprovedtid)
is_approved = c.isApprovedForAll(owner, acc[0])
owner. assume(al0] != app) assume(is_approved == 0)

c.transferFrom(owner, a[1], tid, sender=acc[0])
pos_owner = c.ownerOf(tid)
check(pos_owner == acc[1])

EVM Bytecode Transaction Sglelelie

. SMT Solver .

Stack Execution

A

Standards

Symbolic
Execution

Build a robust and efficient symbolic
execution machine for EVM bytecode!

Challenge: Address Scheme

e Solidity state address space:
e 256bit address =2 uint256

e Solidity uses crypto hash function to compute the storage location
for dynamically allocated variables.

* Constraint solver cannot handle crypto computations efficiently.

Challenge: Address Scheme

uint256 totalSupply;
mapping (address => uint256) balances;
function balanceOf(address src) public view returns (uint) {

return balances|src];

}
bal = C.balanceOf(address)

Storage Access O

bal = C.balanceOf(ad

dress

&

otimization

-

uint256 totalSupply;

mapping (address => uint256) balances;

totalSupply

\

0 1 2 3 4

2256

Persistent Storage

Challenge: Address Scheme

/uint256 totalSupply;

mapping (address => uint256) balances;

Aretum balances|src];
}
bal = C.balanceOf(address)

function balanceOf(address src) public view returns (uint) {

~

sha3(&balances, src)

sload

totalSupply

\

0 1 2 3 4

2256

Persistent Storage

Storage Access Optimization

balances|src]

e Crypto hash function
* Avoid collision
* Expensive for solver

&)

Our Solution

e Static analysis on the binary code to pair SHA3 with storage access
operations.

* Change every load/store to use a customized address scheme that is
equivalent to the original one (assuming no hash collision).

* Symbolic executes on the modified EVM byte code

State Variables

Storage Access Optimization

\

[

|

balances

\

(

\

balances|src]

0

1

2

r+0

r+1

r+2

(&balances << 2©c

e Customized address scheme
* Avoid collision
e Efficient for solver

Challenge: Volatile Memory

e Solidity state address space:
e 256bit address =2 uint256

e Solidity volatile memory:
e 256bit address =2 uint8

* Integers are broken into 32 bytes and then merged again when
moving between state/volatile memory

e Solution: cache symbolic value stored into the volatile memory

Challenge: Account Addresses

e Address ranges from 0 to 2169

* Itisimpossible to iterate over

ADDRS all possible addresses.

Account Address Pool

Add address to address
pool.

PUSH 2160 _ 1

AND

The address
is symbolic

Yes

Add constraint: address is
from address pool.

Evaluation

e 779 ERC-20 smart contracts from EtherScan
e 310 ERC-721 smart contracts from EtherScan
* Four Security Policies
* ERC-20
* Total Supply
e Approve and TransferFrom

* Transfer
* ERC-721
e Approve and TransferFrom

Evaluation

e 228 errors.
e 210 new errors.
e 188 vulnerable contracts.

Only 10 false positives.

Evaluation

MW Severe M Backdoor

B Potential Token Loss ® Deviation

* Anyone
* Financial loss of contract
participants

Evaluation

MW Severe M Backdoor

B Potential Token Loss ® Deviation

* Contract owner
 Exploitable privileges

Evaluation

MW Severe M Backdoor

B Potential Token Loss ® Deviation

* Theoretically exploitable
e Specific time period
 Alarge amount of digital assets

Evaluation

MW Severe M Backdoor

B Potential Token Loss ® Deviation

e Extra functionalities

Comparison with Other Tools

e Sampled 100 smart contracts for manual analysis

_ Whole Benchmark 100 Sampled Benchmark

Tool Reported Reported True Positive | False Positive | Benign Errors
Errors Contracts

Securify 2432

Oyente 3036 763 7 198 85
Mythril 1627 730 3 63 61
Solar 228 188 25 2 0

* Solar reports more true positives and significantly less false positives
and benign errors

Why Solar Performs Better?

 Utilizing standard information as specifications
* Capable of detecting logic errors
* No benign errors

e Optimized symbolic execution engine for EVM
* Efficient and accurate handling of load/store instructions
* Much less false positives

Example - Severe

function transferFrom(address from, address to, uint value) {

if(value < allowance([to][msg.sender]) return false;
Should be greater than or equal to (>)

 This error allows an attacker to transfer one account’s tokens to the
other without proper approval.

Example - Backdoor

function mint(address holder, uint value) external {

require(totalSupply + value <= TOKEN_LIMIT);
balances| holder| += value;
totalSupply += _value;

Example - Backdoor

function mint(address _holder, uint value) external {

require(totalSupply + value <= TOKEN_LIMIT);
balances| holder| += value;
totalSupply += value;

)

 This error allows the contract owner to allocate more tokens than
TOKEN_LIMIT.

* It also allows the contract owner to modify _holders balance to an
arbitrary value.

Example — Potential Token Loss

function claimMigrate() {
balances[msg.sender]| += pendingMigrations/msg.sender|.amount;

)

Example — Potential Token Loss

function claimMigrate() {
balances[msg.sender]| += pendingMigrations[msg.sender].amount;

* |f the sender has large amount of token in previous contract, his/her
balance will be overflowed.

Example — Deviation

* Transfer function without return value.
* Prevents other contract from calling transfer function.
* Frozen token.
* Breaks the total supply invariant
e Standard deviation may lead to token loss depending on how the

token is used.

Can we detect standard violation
errors with no false positive and
no false negative?

Yes! Runtime checks!

Consensus is the Primary Bottleneck

* Parity is one of the fastest
Ethereum client

* Run ERC20/ERC721 transactions:

e With normal Parity client
* With Parity but without consensus

* With Parity, without consensus,
and with an empty blockchain
state as the start

* Consensus limits the throughput
with the block gas cap

Transaction per Second

1000

500

2992

1489

1077

Parity-Consensus Parity-Present-Chain Parity-Empty-Chain

1483

mERC-20 mERC-721

Running Parity with an empty chain is faster?

Storage is the Secondary Bottleneck

* Over 68% of performance
counters are inside RocksDB or
for load/store instructions

e Other EVM parts only take 9%

 Not all EVM instructions are
equal

 State load/store instructions are
significantly more expensive
than other EVM instructions

Performance Counter Results
Others

2%

L~

Solythesis

@ T ﬁ_'g_')

Solidity Code Standard Solythesis Instrumented
Invariants Solidity Code

* Given standard invariants, Solythesis instruments Solidity code
* The instrumented code rejects transactions that violate invariants

* Design goal:
* Minimize storage access instructions
* Be expressive enough for all kinds of invariants

A

Solythesis Invariants

* ERC20 total supply invariants:

State variables in the

. contract
Intermediate

variables defined
in the invariant

Free variables as the
iterator

ZaEAddress(balanCBOf(a)) — totalSupply()

ERC1202 Voting Contract Standard

 ERC1202 is a standard for smart contracts to implement voting

* It supports hosting multiple issues

* Each issue contains multiple options to vote

* Each participant may have a different weight for each issue

* For each issue, the option with the highest accumulated weight wins

* However, the example in ERC1202 contains an implementation error

ERC1202 Example

mapping (uint => mapping (address => uint256)) weights;
mapping (uint => mapping (uint => uint256)) weightedVoteCounts;

mapping (uint => mapping (address => uint)) ballot;

ERC1202 Example

mapping (uint => mapping (address => uint256)) weights;
mapping (uint => mapping (uint => uint256)) weightedVoteCounts;
mapping (uint => mapping (address => uint)) ballot;

function vote(uint issueld, uint option) public {

uint256 weight = weights|issueld][msg.sender]; Problem: People may

vote multiple times!
weightedVoteCounts|issueld]|[option] += weight;

ballots|issueld]|[msg.sender]| = option;

}

ERC1202 Example

mapping (uint => mapping (address => uint256)) weights;
mapping (uint => mapping (uint => uint256)) weightedVoteCounts;
mapping (uint => mapping (address => uint)) ballot;
function vote(uint issueld, uint option) public {
uint256 weight = weights|issueld||msg.sender|;
weightedVoteCounts[issueld][ballots[issueld][msg.sender]] -= weight;

weightedVoteCounts|issueld]|[option] += weight;

ballots|issueld]|[msg.sender]| = option;

}

A

ERC1202 Solythesis Invariant

* The weightedVoteCounts should always equal to the sum of the
weights of participants who voted for the option

s = map a,b sum weights[g][x] over x where ballot[&g][6] == x

forall a,b6 assert s[4][b] == weightedVoteCounts[4][4]

* sis an intermediate map that conditionally sums over expressions

* The combination of assert and forall defines constraints that iterate
over all elements of maps

How to Efficiently Enforce Such Invariant?

* Naive Approach: Loops over all relevant map values in the blockchain
state to check the invariant at the end of every transaction

* Extremely slow
* High gas cost

* Our Approach: Synthesize delta updates to intermediate values and
delta invariant check to evaluate relevant constraints
* Instrument runtime checks only for values that might change!

Delta Update

s = map a,b sum weights[g][x] over x where ballot[&g][6] == x

* Declare a new map (uint -> uint -> uint) to maintain the value of s.

* Synthesize and instrument code to update s when:
* weights is updated
 or ballot is updated

Delta Update

function vote(uint issueld, uint option) public {
uint256 weight = weights|issueld|[msg.sender];

weightedVoteCounts|issueld|[option] += weight; Solythesis computes the binding

between quantifier variables and
contract expression:
a =2 issueld

b 2 msg.sender
) I X = ballot[issueld][msg.sender]

s = map a,b sum weights[g][x] over x where ballot[&g][6] == x

ballots[issueld][msg.sender]| = option;

Delta Update

function vote(uint issueld, uint option) public {
uint256 weight = weights|issueld|[msg.sender];
weightedVoteCounts|issueld][option] += weight;
s[issueid][ballot[issueld][msg.sender]] -= weights[issueld][msg.sender];
ballots|issueld]|[msg.sender]| = option;

s[issueid][ballot[issueld][msg.sender]] += weights[issueld][msg.sender];

Delta Invariant Check

forall g,6 assert s[a][b] == weightedVoteCounts[&][]

* Only check relevant instances of (a,b) when:

* sis updated
e or weightedVoteCounts is updated

e Maintain lists to track relevant instances

Delta Invariant Check

function vote(uint issueld, uint option) public {

uint256 weight = weights|issueld|[msg.sender];
weightedVoteCounts|issueld][option] += weight;

s[issueid][ballot[issueld][msg.sender]] -= weights[issueld][msg.sender];

ballots|issueld]|[msg.sender]| = option;

s[issueid][ballot[issueld][msg.sender]] += weights[issueld][msg.sender];

}

Delta Invariant Check

function vote(uint issueld, uint option) public {
uint256 weight = weights|issueld|[msg.sender];
a_arr.push(issueld); b_arr.push(option);

weightedVoteCounts|issueld][option] += weight;

s[issueid][ballot[issueld][msg.sender]] -= weights[issueld][msg.sender];

ballots|issueld]|[msg.sender]| = option;

s[issueid][ballot[issueld][msg.sender]] += weights[issueld][msg.sender];

}

Delta Invariant Check

function vote(uint issueld, uint option) public {
uint256 weight = weights|issueld|[msg.sender];
a_arr.push(issueld); b_arr.push(option);
weightedVoteCounts|issueld][option] += weight;
a_arr.push(issueld); b_arr.push(ballot[issueld][msg.sender]);
s[issueid][ballot[issueld][msg.sender]] -= weights[issueld][msg.sender];

ballots|issueld]|[msg.sender]| = option;

s[issueid][ballot[issueld][msg.sender]] += weights[issueld][msg.sender];

}

Delta Invariant Check

function vote(uint issueld, uint option) public {
uint256 weight = weights|issueld|[msg.sender];
a_arr.push(issueld); b_arr.push(option);
weightedVoteCounts|issueld][option] += weight;
a_arr.push(issueld); b_arr.push(ballot[issueld][msg.sender]);
s[issueid][ballot[issueld][msg.sender]] -= weights[issueld][msg.sender];
ballots|issueld]|[msg.sender]| = option;
a_arr.push(issueld); b_arr.push(ballot[issueld][msg.sender]);

s[issueid][ballot[issueld][msg.sender]] += weights[issueld][msg.sender];

Delta Invariant Check

function vote(uint issueld, uint option) public {

a_arr.push(issueld); b_arr.push(ballot[issueld][msg.sender]);

s[issueid][ballot[issueld][msg.sender]] += weights[issueld][msg.sender];

Delta Invariant Check

function vote(uint issueld, uint option) public {

a_arr.push(issueld); b_arr.push(ballot[issueld][msg.sender]);
s[issueid][ballot[issueld][msg.sender]] += weights[issueld][msg.sender];
for (uint256 index = 0; index < a_arr.length; index +=1)

assert (s[a_arr[index]][b_arr[index]] ==

weightedVoteCounts[x_arr[index]][y_arr[index]]);

More Optimizations

* Volatile Memory: Volatile memory is much cheaper than state
load/store. We replace states with volatile memory whenever
possible.

* Cache Load: If a state variable is loaded multiple times, we will
remove future loads and cache it in the volatile memory

* Eliminate Redundant Updates: Eliminate those instrumentations that
are redundant

Solythesis Experiments

* We collect three representative contracts:
 ERC20: BEC Token
 ERC721: DozerDoll
 ERC1202: Vote Example

* Apply Solythesis to instrument these contracts

* Run these contracts on Parity and measure the overhead
e For BEC and DozerDoll, we use history transactions in Ethereum

* For Vote Example, we synthesize a transaction trace that repeatedly call
important functions like Createlssues() and Vote()

Results with Ethereum Consensus
[[ercx0 [eRc7a [eRcwoz

Average Solythesis 1.534% 1.661% 2.810%

CPU Original 1.446% 1.681% 2.508%

Disk Write Solythesis 42K /s 58K/s 82K/s
Original 42K /s 54K/s 70K/s

 Comparing to expensive cost of running PoW consensus
* Negligible CPU usage increasement

* Negligible extra disk writes

* ~30% more gas for the instrumentation

Results without Ethereum Consensus

e Less than 5% overhead for ERC20 ™
e “8% overhead for ERC721
e ~20% overhead for ERC1202

 The overhead is tied to the 2 600
number of instrumented 400
loads/stores. .

ERC20 ERC721 ERC1202

1400

1200

[EEN
o
o
o

Transactions per Second

o

W Solythesis m Original

Conclusion

* Two tools for utilizing specifications from contract standards
* Solar: Symbolic execution engine for EVM with significantly less false positive
* Solythesis: Efficient runtime check instrumentation for Solidity code

* EVM is often the enemy for designing efficient program analysis.

* SHA3 for addressing the space
» Different layouts between the state space and the volatile memory space

* Smart contract execution environment is totally different from
general purpose programs.
* Consensus and storage are the bottleneck.
 Different tradeoffs between performance and security

