
Solvers for Security Analysis
of Smart Contracts

Vijay Ganesh
University of Waterloo, Canada

Sunday Oct 6, 2019
Waterloo Blockchain+Security Workshop, Canada

PART I
CONTEXT AND MOTIVATION

WHY SHOULD YOU CARE ABOUT SAT SOLVERS?

2

SOFTWARE ENGINEERING AND SAT/SMT SOLVERS
AN INDISPENSABLE TACTIC FOR ANY STRATEGY

Formal
Methods

Program
Analysis

Automatic
Testing

Program
Synthesis

SAT/SMT
Solvers

3

SOFTWARE ENGINEERING USING SOLVERS
ENGINEERING, USABILITY, NOVELTY

Program Reasoning
Tool

Program Specification

Program is correct?
or Generate Counterexamples (test cases)

SAT/SMT
Solver

Logic Formulas

SAT/UNSAT

4

• Solver-based programming languages
• Compiler optimizations using solvers
• Solver-based debuggers
• Solver-based type systems
• Solver-based concurrency bugfinding
• Solver-based synthesis

• Bounded MC
• Program Analysis
• AI

• Concolic Testing
• Program Analysis
• Equivalence Checking
• Auto Configuration

SAT/SMT SOLVER RESEARCH STORY
A 1000X+ IMPROVEMENT

52019

IMPORTANT CONTRIBUTIONS
AN INDISPENSABLE TACTIC FOR ANY STRATEGY

Formal
Methods

Program
Analysis

Automatic
Testing

Program
Synthesis

STP
Hampi

Z3 String Solver
MapleSAT

MathCheck

6

• A literal p is a Boolean variable x or its negation ¬x. A clause C is a disjunction of literals. E.g., (x2 ∨ ¬x41∨ x15). A k-CNF

formula is a conjunction of m clauses over n variables, with k literals per clause. An assignment is a mapping from

variables to True/False. A unit clause C has exactly one unbound literal, under a partial assignment

• Boolean SATisfiability problem: given Boolean formulas in k-CNF, decide whether they are satisfiable. The challenge is

coming up with an efficient procedure.

• A SAT Solver is a computer program that solves the SAT problem.

• The challenge for SAT solver developer is:

• Develop a solver that works efficiently for a very large class of practical applications. Solvers must produce solutions for

satisfiable instances, and proofs for unsatisfiable ones. Solvers must be extensible. Perhaps, the most important problem

is to understand and explain why solvers work well even though the problem is NP-complete.

THE BOOLEAN SATISFIABILITY PROBLEM

7

TALK OUTLINE
• Part I

• Context and motivation for the Boolean SAT problem

• Part II
• DPLL and CDCL SAT solvers

• Part III
• Key research questions and insights

• Part IV
• Heuristics are optimization engines, and machine learning (ML) for SAT. MapleSAT

series of SAT solvers [LG+15, LG+16, LG+17, LG+18]

• Part V
• Conclusions and takeaways

PART II
DPLL AND CDCL SOLVER ALGORITHMS

9

DPLL SAT SOLVER ARCHITECTURE (1958)
THE BASIC BACKTRACKING SAT SOLVER

DPLL(Θcnf, assign) {

Propagate unit clauses;

if ”conflict”: return FALSE;

if ”complete assign”: return TRUE;

”pick decision variable x”;

return
DPLL(Θcnf⎮x=0, assign[x=0]) ||
DPLL(Θcnf⎮x=1, assign[x=1]);

}

x
F T

y

DPLL stands for Davis, Putnam, Logemann, and Loveland

10

MODERN CDCL SAT SOLVER ARCHITECTURE
OVERVIEW

Return
SAT

Return
UNSAT

Conflict
Analysis()

Top-level
Conflict?

Backjump()

Input SAT Instance

Propagate()
(BCP)

Conflict?

All Vars
Assigned?

Branch()

x
F T

y

Learnt clause (x) Learnt clause (neg(z) OR y)

11

PART III
RESEARCH QUESTIONS

WHY ARE SAT SOLVERS EFFICIENT AT ALL?

12

RESEARCH QUESTIONS AND RESULTS
WHY ARE SAT SOLVERS EFFICIENT AT ALL?

Understanding the
efficacy of solvers

(practical proof
systems)

Proof
complexity

Parameterized
complexity

Machine
learning based
solver design

• CDCL SAT solvers are
polynomially-equivalent to
merge resolution

• Proof complexity of SMT
solvers [RKG18]

• Introduced the merge
parameter as a basis for
upper bound analysis
[ZG+18]

• Merge as a feature for
machine learning based
clause deletion

• Introduced the idea of ‘solver as a collection of
machine learning based optimization engines’
[LG+16,LG+17,LG+18]

• Successfully used it develop new ML-based
branching and restart policies in MapleSAT

THE CONTEXT
PARAMETERIZED PROOF-COMPLEXITY FOR FORMAL METHODS

General resolution The rule is form of modus ponens. Proof is a directed acyclic graph (DAG).

𝑥$ ∨ ⋯ ∨ 𝑥& ¬𝑥& ∨ 𝑦$ …∨ 𝑦*
𝑥$ ∨ ⋯∨ 𝑥&+$ ∨ 𝑦$ … ∨ 𝑦*

Merge resolution Derived clauses have to share literals to apply rule. Proof is a DAG.

𝑥$ ∨ ⋯ ∨ 𝑥& ¬𝑥& ∨ ⋯𝑥&+$
𝑥$ ∨ ⋯ ∨ 𝑥&+$

Unit resolution One clause must be unit. Proof is a DAG.

𝑥& ¬𝑥& ∨ 𝑦$ …𝑦*
𝑦$ ∨ ⋯ ∨ 𝑦*

Tree resolution Same rules as general resolution. Proof is a tree. Not allowed to reuse lemmas unlike DAG proofs.

HEURISTICS AS OPTIMIZATIONS PROCEDURES
MACHINE LEARNING FOR SOLVERS

• SAT solvers as a proof system that attempts to
produce proofs for input unsatisfiable formulas in the
shortest time possible

• In other words, certain sub-routines of a SAT solver
implement proof rules (e.g., BCP implements the
unit resolution rule),

• Other sub-routines aim to optimally select, schedule,
or initialize proof rule application

• These optimization procedures operate in a data-rich
environment, need to be adaptive and online

• Machine learning to the rescue!! Transforming solver
design from “an art to a science”

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT Branch() TopLevel

Conflict?

Return
UNSAT BackJump()

Input SAT Instance

PART IV
MACHINE LEARNING BASED

BRANCHING HEURISTICS

16

PROBLEM STATEMENT: WHAT IS A BRANCHING HEURISTIC?
A METHOD TO MAXIMIZE LEARNING RATE

Question: What is a variable selection (branching) heuristic?
• A “dynamic” ranking function that ranks variables in a formula in descending order
• Re-ranks the variables at regular intervals throughout the run of a SAT solver
• We were unsatisfied with this understanding of VSIDS branching heuristic

Our experiments and results: [LG+15, LGPC16, LGPC+16, LGPC17, LGPC18]
• We studied 7 of the most well-known branching heuristics in detail
• Viewed branching as prediction engines that attempt to maximize global learning rate

• In turn led us to devise new ML-based branching that for the first time matched VSIDS

MODERN CDCL SAT SOLVER ARCHITECTURE
DECIDE(): VSIDS BRANCHING HEURISTIC

VSIDS (Variable State Independent Decaying Sum) Branching

• Imposes dynamic variable order

• Each variable is assigned a floating-point value called activity

• Measures how “active” variable is in recent conflict clauses

VSIDS pseudo-code

• Initialize activity of all variables (vars) to 0

VSIDS() {
Upon conflict

* Bump activity of vars appearing on the conflict
side of the implication graph

* Decay activity of all vars by a constant c: 0 < c < 1
Branch on unassigned var with highest activity

} //End of VSIDS

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT Branch() TopLevel

Conflict?

Return
UNSAT BackJump()

Input SAT Instance

VSIDS1: CONFLICT DRIVEN BRANCHING

19

5

5

5

2

45

33

5

1 1

conflict

1st-UIP cut

Decay:
Activity
×0.95

Bump:
Activity

+1 1. Chaff: Engineering an efficient SAT
solver. Matthew W. Moskewicz, Conor
F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. DAC 2001.

CDCL FEEDBACK LOOP

20

Decisions

Propagations

Clause LearningAgent Environment

Partial Assignment

Learnt Clause

VSIDS: WHY BUMP AND DECAY?

for all variables v:

activity[v] = 0

on conflict:

for all variables v between cut and conflict:

activity[v] += 1

for all variables v in learnt clause:

activity[v] += 1

for all variables v:

activity[v] *= 0.95

21

Bump
observation:

~12 times more
likely to cause
conflicts when
branched on

Decay
observation:

𝑏𝑢𝑚𝑝0+0.95
+ 𝑏𝑢𝑚𝑝0+60.956
+ 𝑏𝑢𝑚𝑝0+70.957
+ ⋯

More weight to
recent bumps via

exponential
moving average

EXPONENTIAL MOVING AVERAGE

22

REINFORCEMENT LEARNING
AND CDCL

Reinforcement
Learning

Agent

Environment

Policy

Action

Estimated Reward (Q)

Reward

Exponential Moving Average

CDCL

Branching Heuristic + BCP

Clause learning

Variable Ranking

Decision

Activity

Bump

Decay

MULTI-ARMED BANDIT PROBLEM

24

p

$

sample average = 1/3 × $4 + 1/3 × $3 + 1/3 × $1

exponential moving average = (1 – α)2 × $4 + (1 – α)1 × $3 + (1 – α)0 × $1

More
weight

Less
weight

p

$

p

$

Best slot
machine
to play

(for now)

WHAT IS A GOOD OBJECTIVE FOR
BRANCHING?

25

A

B

?

T

T

confli
ct

confli
ct

T F

of lemmas

of “cases”

PROBLEM STATEMENT: WHAT IS A BRANCHING HEURISTIC?
OUR FINDINGS

Finding 1: Global Learning Rate Maximization
Branching heuristics are prediction engines which predict variables to branch on that will
maximize
Global Learning Rate (GLR) = (# of conflicts)/(# of decisions)

Finding 2: Branch on Conflict Analysis Variables ‘maximizes’ GLR
Successful branching heuristics focus on variables involved in ‘recent’ conflicts to maximize
GLR. Reward variables that gave you a conflict

Finding 3: The Searchlight Analogy a la Exploitation vs. Exploration (multiplicative decay)
Focus on recent conflicts, maximize learning, then move on. One can use reinforcement
learning for such a heuristic.

LEARNING RATE EXAMPLE

Student Teacher

A = false, B = true, C = false,…

Learnt Clause: A or C

Student Teacher

A = false, C = true, D = false,…

Learnt Clause: A or D

Student Teacher

A = false, B = true, D = false,…

Learnt Clause: D or C

Student Teacher

B = true, D = false,…

Learnt Clause: D or E

sampled_learning_rate(A) = 2/3 sampled_learning_rate(B) = 0/3

LEARNING-RATE BRANCHING (LRB)
EXAMPLE

B or D

A or B

A or D

C or D

B or C

A or E

B or E

C or E

A is assigned

A is unassigned

sampled_learning_rate(A) = 2/3

A is assigned

A is unassigned

sampled_learning_rate(A) = 1/3

exponential moving average = (1 – α)1 × 2/3 + (1 – α)0 × 1/3

“Rewards”

Activity(A)

VSIDS

The reward is a constant

Every time a variable appears in a
conflict analysis, its activity is

additively bumped by a constant

LRB

Exponential Moving Average (EMA)
performed for all variables at the

same time

After each conflict, the activities of all
variables are decayed

The reward is not constant

Every time a variable appears in a conflict
analysis, the numerator of its learning rate
reward is incremented. After each conflict,
the denominator of each assigned variable’s

learning rate reward is incremented

EMA performed only when variable goes
from assigned to unassigned

When a variable is unassigned, the variable
receives the learning rate reward, and the

estimate Q is updated.

Most importantly, we understand why
bumping certain variables and why

performing multiplicative decay helps.

APPLE-TO-APPLE RESULTS
(MINISAT WITH VSIDS VS. CHB VS. LRB)

COMPARISON WITH STATE-OF-THE-ART:
CRYPTOMINISAT, MAPLECMS, GLUCOSE, AND LINGELING

RESULT: GLOBAL LEARNING-RATE

• Global Learning Rate: # of conflicts/# of decisions

• Experimental setup: ran 1200+ application and hand-crafted instances on
MapleSAT with VSIDS, CHB, LRB, Berkmin, DLIS, and JW with 5400 sec
timeout per instance on StarExec

Branching Heuristic Global Learning Rate

LRB 0.452

MVSIDS 0.410

CHB 0.404

CVSIDS 0.341

BERKMIN 0.339

DLIS 0.241

JW 0.107

PART V

CONCLUSIONS AND TAKEAWAY

33

CONCLUSIONS AND TAKEAWAY
RESULTS EXPLAINING THE POWER OF SAT SOLVERS

Understanding the
efficacy of solvers

(practical proof
systems)

Proof
complexity

Parameterized
complexity

Machine
learning based
solver design

• CDCL SAT solvers are
polynomially-equivalent to
merge resolution

• Proof complexity of SMT
solvers [RKG18]

• Introduced the merge
parameter as a basis for
upper bound analysis
[ZG18]

• Merge as a feature for
machine learning based
clause deletion

• Introduced the idea of ‘solver as a collection of
machine learning based optimization
engines’[LG+16,LG+17,LG+18]

• Successfully used this paradigm to develop new ML-
based branching, restart, initialization, and splitting
policies in MapleSAT

PART VI

One more thing…

35

LOGIC GUIDED MACHINE LEARNING

36

Preliminary results: used this idea to learn the
Pythagorean theorem and the Sine function from data

Symbolic representation of ML model

ML ModelData
SAT/SMT Solver

Auxiliary
truth

“Optimal” counter-example/adversarial example

CURRENT RESEARCH PROGRAM

Proof Complexity
and

Formal Methods

Machine Learning
and Deduction

Physics Software
verification.

SAT+CAS for Math

Formal Security via
Attack-resistance

STP
Hampi

Z3 String
MapleSAT

MathCheck
LGML

REFERENCES

• [MMZZM01] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L. and Malik, S. Chaff: Engineering an efficient SAT solver. DAC 2001

• [BKS03] Beame, P., Kautz, H., Sabharwal, A. Understanding the Power of Clause Learning. IJCAI 2003

• [WGS03] Williams, R., Gomes, C.P. and Selman, B. Backdoors to typical case complexity. IJCAI 2003

• [B09] Biere, A. Adaptive restart strategies for conflict driven SAT solvers. SAT 2008

• [BSG09] Dilkina, B., Gomes, C.P. and Sabharwal, A. Backdoors in the context of learning. SAT 2009

• [KSM11] Katebi, H., Sakallah, K.A. and Marques-Silva, J.P. Empirical study of the anatomy of modern SAT solvers. SAT 2011

• [AL12] Ansótegui, C., Giráldez-Cru, J. and Levy, J. The community structure of SAT formulas. SAT 2012

• [NGFAS14] Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G. and Simon, L. Impact of community structure on SAT solver performance. SAT 2014

• [LGZC15] Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A. and Czarnecki, K. Understanding VSIDS branching heuristics in CDCL SAT solvers. HVC 2015.

• [LGRC15] Liang, J.H., Ganesh, V., Raman, V., and Czarnecki, K. SAT-based Analysis of Large Real-world Feature Models are Easy. SPLC 2015

• [LGPC16] Liang, J.H., Ganesh, V., Poupart, P., and Czarnecki, K. Learning Rate Based Branching Heuristic for SAT Solvers. SAT 2016

• [LGPC+16] Liang, J.H., Ganesh, V., Poupart, P., and Czarnecki, K. Conflict-history Based Branching Heuristic for SAT Solvers. AAAI 2016

• [RKG18] Robere, R., Kolkolova, A., Ganesh, V. Proof Complexity of SMT Solvers. CAV 2018

