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PART I
CONTEXT AND MOTIVATION

WHY SHOULD YOU CARE ABOUT SAT SOLVERS?
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SOFTWARE ENGINEERING AND SAT/SMT SOLVERS
AN INDISPENSABLE TACTIC FOR ANY STRATEGY

Formal 
Methods

Program 
Analysis

Automatic 
Testing

Program 
Synthesis

SAT/SMT
Solvers
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SOFTWARE ENGINEERING USING SOLVERS
ENGINEERING, USABILITY, NOVELTY

Program Reasoning 
Tool

Program Specification

Program is correct?
or Generate Counterexamples (test cases)

SAT/SMT 
Solver

Logic Formulas

SAT/UNSAT
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• Solver-based programming languages
• Compiler optimizations using solvers
• Solver-based debuggers
• Solver-based type systems
• Solver-based concurrency bugfinding
• Solver-based synthesis

• Bounded MC
• Program Analysis
• AI

• Concolic Testing
• Program Analysis
• Equivalence Checking
• Auto Configuration

SAT/SMT SOLVER RESEARCH STORY
A 1000X+ IMPROVEMENT
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IMPORTANT CONTRIBUTIONS
AN INDISPENSABLE TACTIC FOR ANY STRATEGY

Formal 
Methods

Program 
Analysis

Automatic 
Testing

Program 
Synthesis

STP
Hampi

Z3 String Solver
MapleSAT

MathCheck
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• A literal p is a Boolean variable x or its negation ¬x. A clause C is a disjunction of literals. E.g.,  (x2 ∨ ¬x41∨ x15).  A k-CNF

formula is a conjunction of m clauses over n variables, with k literals per clause. An assignment is a mapping from 

variables to True/False. A unit clause C has exactly one unbound literal, under a partial assignment

• Boolean SATisfiability problem: given Boolean formulas in k-CNF, decide whether they are satisfiable. The challenge is 

coming up with an efficient procedure. 

• A SAT Solver is a computer program that solves the SAT problem. 

• The challenge for SAT solver developer is:

• Develop a solver that works efficiently for a very large class of practical applications. Solvers must produce solutions for 

satisfiable instances, and proofs for unsatisfiable ones. Solvers must be extensible. Perhaps, the most important problem 

is to understand and explain why solvers work well even though the problem is NP-complete.

THE BOOLEAN SATISFIABILITY PROBLEM
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TALK OUTLINE
• Part I

• Context and motivation for the Boolean SAT problem

• Part II
• DPLL and CDCL SAT solvers

• Part III
• Key research questions and insights

• Part IV
• Heuristics are optimization engines, and machine learning (ML) for SAT. MapleSAT 

series of SAT solvers [LG+15, LG+16, LG+17, LG+18]

• Part V
• Conclusions and takeaways



PART II
DPLL AND CDCL SOLVER ALGORITHMS
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DPLL SAT SOLVER ARCHITECTURE (1958)
THE BASIC BACKTRACKING SAT SOLVER

DPLL(Θcnf, assign) {

Propagate unit clauses;

if ”conflict”: return FALSE;

if ”complete assign”: return TRUE;

”pick decision variable x”;

return
DPLL(Θcnf⎮x=0, assign[x=0]) || 
DPLL(Θcnf⎮x=1, assign[x=1]);

}

x
F T

y

DPLL stands for Davis, Putnam, Logemann, and Loveland
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MODERN CDCL SAT SOLVER ARCHITECTURE
OVERVIEW

Return
SAT

Return
UNSAT

Conflict
Analysis()

Top-level
Conflict?

Backjump()

Input SAT Instance

Propagate()
(BCP)

Conflict?

All Vars
Assigned?

Branch()

x
F T

y

Learnt clause (x) Learnt clause (neg(z) OR y)
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PART III
RESEARCH QUESTIONS

WHY ARE SAT SOLVERS EFFICIENT AT ALL?
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RESEARCH QUESTIONS AND RESULTS
WHY ARE SAT SOLVERS EFFICIENT AT ALL?

Understanding the 
efficacy of solvers

(practical proof 
systems)

Proof 
complexity

Parameterized 
complexity

Machine 
learning based 
solver design

• CDCL SAT solvers are 
polynomially-equivalent to 
merge resolution

• Proof complexity of SMT 
solvers [RKG18]

• Introduced the merge 
parameter as a basis for 
upper bound analysis 
[ZG+18]

• Merge as a feature for 
machine learning based 
clause deletion

• Introduced the idea of ‘solver as a collection of 
machine learning based optimization engines’ 
[LG+16,LG+17,LG+18]

• Successfully used it develop new ML-based 
branching and restart policies in MapleSAT



THE CONTEXT
PARAMETERIZED PROOF-COMPLEXITY FOR FORMAL METHODS

General resolution The rule is form of modus ponens. Proof is a directed acyclic graph (DAG).

𝑥$ ∨ ⋯ ∨ 𝑥& ¬𝑥& ∨ 𝑦$ …∨ 𝑦*
𝑥$ ∨ ⋯∨ 𝑥&+$ ∨ 𝑦$ … ∨ 𝑦*

Merge resolution Derived clauses have to share literals to apply rule. Proof is a DAG.

𝑥$ ∨ ⋯ ∨ 𝑥& ¬𝑥& ∨ ⋯𝑥&+$
𝑥$ ∨ ⋯ ∨ 𝑥&+$

Unit resolution One clause must be unit. Proof is a DAG.

𝑥& ¬𝑥& ∨ 𝑦$ …𝑦*
𝑦$ ∨ ⋯ ∨ 𝑦*

Tree resolution Same rules as general resolution. Proof is a tree. Not allowed to reuse lemmas unlike DAG proofs. 



HEURISTICS AS OPTIMIZATIONS PROCEDURES
MACHINE LEARNING FOR SOLVERS

• SAT solvers as a proof system that attempts to 
produce proofs for input unsatisfiable formulas in the 
shortest time possible

• In other words, certain sub-routines of a SAT solver 
implement proof rules (e.g., BCP implements the 
unit resolution rule), 

• Other sub-routines aim to optimally select, schedule, 
or initialize proof rule application

• These optimization procedures operate in a data-rich 
environment, need to be adaptive and online

• Machine learning to the rescue!! Transforming solver 
design from “an art to a science”

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT Branch() TopLevel

Conflict?

Return
UNSAT BackJump()

Input SAT Instance



PART IV
MACHINE LEARNING BASED

BRANCHING HEURISTICS
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PROBLEM STATEMENT: WHAT IS A BRANCHING HEURISTIC?
A METHOD TO MAXIMIZE LEARNING RATE

Question: What is a variable selection (branching) heuristic?
• A “dynamic” ranking function that ranks variables in a formula in descending order
• Re-ranks the variables at regular intervals throughout the run of a SAT solver
• We were unsatisfied with this understanding of VSIDS branching heuristic

Our experiments and results: [LG+15, LGPC16, LGPC+16, LGPC17, LGPC18]
• We studied 7 of the most well-known branching heuristics in detail
• Viewed branching as prediction engines that attempt to maximize global learning rate

• In turn led us to devise new ML-based branching that for the first time matched VSIDS



MODERN CDCL SAT SOLVER ARCHITECTURE
DECIDE(): VSIDS BRANCHING HEURISTIC

VSIDS (Variable State Independent Decaying Sum) Branching

• Imposes dynamic variable order

• Each variable is assigned a floating-point value called activity

• Measures how “active” variable is in recent conflict clauses

VSIDS pseudo-code

• Initialize activity of all variables (vars) to 0

VSIDS() {
Upon conflict

* Bump activity of vars appearing on the conflict
side of the implication graph

* Decay activity of all vars by a constant c: 0 < c < 1
Branch on unassigned var with highest activity

} //End of  VSIDS

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT Branch() TopLevel

Conflict?

Return
UNSAT BackJump()

Input SAT Instance



VSIDS1: CONFLICT DRIVEN BRANCHING
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conflict

1st-UIP cut

Decay:
Activity
×0.95

Bump:
Activity 

+1 1. Chaff: Engineering an efficient SAT 
solver. Matthew W. Moskewicz, Conor
F. Madigan, Ying Zhao, Lintao Zhang, 
and Sharad Malik. DAC 2001.



CDCL FEEDBACK LOOP
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Decisions

Propagations

Clause LearningAgent Environment

Partial Assignment

Learnt Clause



VSIDS: WHY BUMP AND DECAY?

for all variables v:

activity[v] = 0

on conflict:

for all variables v between cut and conflict:

activity[v] += 1

for all variables v in learnt clause:

activity[v] += 1

for all variables v:

activity[v] *= 0.95
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Bump 
observation: 

~12 times more 
likely to cause 
conflicts when 
branched on

Decay 
observation:

𝑏𝑢𝑚𝑝0+$0.95$
+ 𝑏𝑢𝑚𝑝0+60.956
+ 𝑏𝑢𝑚𝑝0+70.957
+ ⋯

More weight to 
recent bumps via 

exponential 
moving average



EXPONENTIAL MOVING AVERAGE
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REINFORCEMENT LEARNING 
AND CDCL

Reinforcement 
Learning

Agent

Environment

Policy

Action

Estimated Reward (Q)

Reward

Exponential Moving Average

CDCL

Branching Heuristic + BCP

Clause learning

Variable Ranking

Decision

Activity

Bump

Decay



MULTI-ARMED BANDIT PROBLEM
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p

$

sample average =             1/3 × $4      +        1/3 × $3      +     1/3 × $1

exponential moving average =       (1 – α)2 × $4      + (1 – α)1 × $3      + (1 – α)0 × $1

More 
weight

Less 
weight

p

$

p

$

Best slot 
machine 
to play 

(for now)



WHAT IS A GOOD OBJECTIVE FOR 
BRANCHING?

25

A

B

?

T

T

confli
ct

confli
ct

T F

# of lemmas

# of “cases”



PROBLEM STATEMENT: WHAT IS A BRANCHING HEURISTIC?
OUR FINDINGS

Finding 1: Global Learning Rate Maximization
Branching heuristics are prediction engines which predict variables to branch on that will 
maximize
Global Learning Rate (GLR) = (# of conflicts)/(# of decisions)

Finding 2: Branch on Conflict Analysis Variables ‘maximizes’ GLR
Successful branching heuristics focus on variables involved in ‘recent’ conflicts to maximize 
GLR. Reward variables that gave you a conflict

Finding 3: The Searchlight Analogy a la Exploitation vs. Exploration (multiplicative decay)
Focus on recent conflicts, maximize learning, then move on. One can use reinforcement 
learning for such a heuristic.



LEARNING RATE EXAMPLE

Student Teacher

A = false, B = true, C = false,…

Learnt Clause:  A or C

Student Teacher

A = false, C = true, D = false,…

Learnt Clause:  A or D

Student Teacher

A = false, B = true, D = false,…

Learnt Clause:  D or C

Student Teacher

B = true, D = false,…

Learnt Clause:  D or E

sampled_learning_rate(A) = 2/3 sampled_learning_rate(B) = 0/3



LEARNING-RATE BRANCHING (LRB) 
EXAMPLE

B or D

A or B

A or D

C or D

B or C

A or E

B or E

C or E

A is assigned

A is unassigned

sampled_learning_rate(A) = 2/3

A is assigned

A is unassigned

sampled_learning_rate(A) = 1/3

exponential moving average =  (1 – α)1 × 2/3      +                   (1 – α)0 × 1/3

“Rewards”

Activity(A)



VSIDS

The reward is a constant

Every time a variable appears in a 
conflict analysis, its activity is 

additively bumped by a constant

LRB

Exponential Moving Average (EMA) 
performed for all variables at the 

same time

After each conflict, the activities of all 
variables are decayed

The reward is not constant 

Every time a variable appears in a conflict 
analysis, the numerator of its learning rate 
reward is incremented. After each conflict, 
the denominator of each assigned variable’s 

learning rate reward is incremented

EMA performed only when variable goes 
from assigned to unassigned

When a variable is unassigned, the variable 
receives the learning rate reward, and the 

estimate Q is updated.

Most importantly, we understand why 
bumping certain variables and why 

performing multiplicative decay helps.



APPLE-TO-APPLE RESULTS
(MINISAT WITH VSIDS VS. CHB VS. LRB)



COMPARISON WITH STATE-OF-THE-ART:
CRYPTOMINISAT, MAPLECMS, GLUCOSE, AND LINGELING



RESULT: GLOBAL LEARNING-RATE

• Global Learning Rate: # of conflicts/# of decisions

• Experimental setup: ran 1200+ application and hand-crafted instances on 
MapleSAT with VSIDS, CHB, LRB, Berkmin, DLIS, and JW with 5400 sec 
timeout per instance on StarExec

Branching Heuristic Global Learning Rate

LRB 0.452

MVSIDS 0.410

CHB 0.404

CVSIDS 0.341

BERKMIN 0.339

DLIS 0.241

JW 0.107



PART V

CONCLUSIONS AND TAKEAWAY
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CONCLUSIONS AND TAKEAWAY
RESULTS EXPLAINING THE POWER OF SAT SOLVERS

Understanding the 
efficacy of solvers

(practical proof 
systems)

Proof 
complexity

Parameterized 
complexity

Machine 
learning based 
solver design

• CDCL SAT solvers are 
polynomially-equivalent to 
merge resolution

• Proof complexity of SMT 
solvers [RKG18]

• Introduced the merge 
parameter as a basis for 
upper bound analysis 
[ZG18]

• Merge as a feature for 
machine learning based 
clause deletion

• Introduced the idea of ‘solver as a collection of 
machine learning based optimization 
engines’[LG+16,LG+17,LG+18]

• Successfully used this paradigm to develop new ML-
based branching, restart, initialization, and splitting 
policies in MapleSAT



PART VI

One more thing…
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LOGIC GUIDED MACHINE LEARNING
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Preliminary results: used this idea to learn the 
Pythagorean theorem and the Sine function from data

Symbolic representation of ML model

ML ModelData
SAT/SMT Solver

Auxiliary 
truth

“Optimal” counter-example/adversarial example



CURRENT RESEARCH PROGRAM

Proof Complexity 
and 

Formal Methods

Machine Learning 
and Deduction

Physics Software 
verification.

SAT+CAS for Math

Formal Security via
Attack-resistance

STP
Hampi

Z3 String
MapleSAT

MathCheck
LGML
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